Olá Alunos, espero que vocês estejam bem!
Não deixem de entregar as atividades da semana anterior pois será pontuada como atividade.
RECOMENDAÇÕES:
- Assistir a
aula do Centro de Mídias
Potencia do numero complexo ( i )
Os números considerados complexos são escritos acompanhados
de uma parte imaginária. No complexo z = a + bi, temos que a parte imaginária é
representada por bi. Considerando i a unidade imaginária, vamos determinar
alguns valores de in. Veja:
Qualquer número elevado a zero será sempre 1, então:
i 0 = 1
Qualquer número elevado a 1 será ele mesmo, então:
i 1 = i
Conforme a regra dos números complexos:
i 2 = – 1
i 3 = i2 * i = (–1) * i = –i
i 4 = i2 * i2 = (–1) * (–
1) = 1
i 5 = i4 * i = 1 * i = i
i 6 = i5 * i = i * i = i2 =
–1
i 7 = i6 * i = (–1) * i = – i
i 8 = i4 * i4 = 1 * 1 = 1
i9 = i8 * i = 1 * i = i
i10 =(i2)5 = (–1)5
= –1
A partir da potência i4 as outras vão se
repetindo de 4 em 4, para calcularmos in (n um número inteiro qualquer), para
calcularmos por exemplo a potência i343, iremos dividir o expoente n
por 4. No caso do exemplo, iremos dividir 343 por 4, irá sobrar um resto r
igual a 3, assim, podemos concluir que:
i n = i r
i 343 = i3, portanto i343 =
– i
Exemplo 1
Aplicando as propriedades da potência, calcule (2 – 2i)6. Podemos fatorar o expoente da seguinte forma:
[(2 – 2i)2]3 =
[22 – 2 * 2 * (2i) + (2i)2]3
[4 – 8i + 4i2]3 =
[4 – 8i + 4 * (–1)]3 =
[4 – 8i – 4]3 =
[– 8i]3 =
– 512 * i3 =
– 512 * (– i) =
+ 512i
Comentários
Postar um comentário